This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

SYNTHESIS AND PROPERTIES OF ADDITION COMPOUNDS BETWEEN TRIPHENYLPHOSPHINE-OXIDE(TPPO) AND LANTHANIDE TRIFLUOROMETHANESULFONATES

F. L. Alencar^a; L. B. Zinner^a; K. Zinner^b; J. E. X. Matos^c ^a Institute de Quimica, Universidade de São Paulo, C.P. 26.077, São Paulo, SP, Brazil ^b Dept. de Quimica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil ^c Dept. de Química Orgnica e Inorgnica, Universidade Federal do Ceará, C.P. 3010, Fortaleza, CE, Brazil

To cite this Article Alencar, F. L., Zinner, L. B., Zinner, K. and Matos, J. E. X.(1999) 'SYNTHESIS AND PROPERTIES OF ADDITION COMPOUNDS BETWEEN TRIPHENYLPHOSPHINE-OXIDE(TPPO) AND LANTHANIDE TRIFLUOROMETHANESULFONATES', Journal of Coordination Chemistry, 46: 4, 471 – 478 **To link to this Article: DOI:** 10.1080/00958979908054912

URL: http://dx.doi.org/10.1080/00958979908054912

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 1999, Vol. 46, pp. 471-478 Reprints available directly from the publisher Photocopying permitted by license only © 1999 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint. Printed in Malaysia.

SYNTHESIS AND PROPERTIES OF ADDITION COMPOUNDS BETWEEN TRIPHENYLPHOSPHINE-OXIDE(TPPO) AND LANTHANIDE TRIFLUOROMETHANESULFONATES

F.L. ALENCAR^a, L.B. ZINNER^{a,*}, K. ZINNER^b and J.E.X. MATOS^c

^aInstituto de Química, Universidade de São Paulo, C.P. 26.077, CEP 05599-970, São Paulo, SP, Brazil; ^bDept. de Química, Universidade Federal do Rio Grande do Norte, C.P. 1661, CEP 59072-970, Natal, RN, Brazil; ^cDept. de Química Orgânica e Inorgânica, Universidade Federal do Ceará, C.P. 3010, CEP 60455-970, Fortaleza, CE, Brazil

(Received 14 August 1997; Revised 26 November 1997; In final form 6 April 1998)

Additon compounds between triphenylphosphine-oxide and trifluoromethanesulfonates are synthesized and characterized by microanalyses, electrolytic conductance, vibrational (infrared) spectra, absorption spectra in the visible region and thermogravimetric procedures. The results are in agreement with the formulas $La(CF_3SO_3)_3$ -3TPPO-4H₂O and $Ln(CF_3SO_3)_3$ -4TPPO. The ligands (TPPO) coordinate through the phosphoryl oxygen. Complex interactions with solvents of different donating capacities are also found. Thermogravimetric studies result in lanthanide trifluoride products.

Keywords: Triphenylphosphine-oxide; lanthanide; complex; addition compound; weakly-coordinating anion

INTRODUCTION

Trifluoromethanesulfonic acid (CF₃SO₃H) (triflic acid) is known as one of the strongest acids, with several applications in organic and inorganic chemistry.¹ The anion, albeit possessing a low donating capacity, may act as mono, bi or tridentate ligand and also as a bridge.² Phosphine-oxides are

^{*} Corresponding author. Fax: 11 815 5579.

known to coordinate to several metals. On coordination the stretching frequencies of the phosphoryl group become lower. The compound $Eu(fod)_3$.2TPPO was previously characterized by elemental analysis, melting point and emission spectroscopy.³ Oxidation studies with Ce(III) nitrate and chloride with TPPO were made using IR spectroscopy and X-ray diffraction techniques, showing that the ligand coordinates to the metal center.⁴ The influence of ligand coordination for compounds $Eu(TTA)_3$.3TPPO and $Eu(TTA)_3$.2TPPO was determined together with the decomposition kinetics.⁵ The stability and dissociation constants and also distribution coefficients were determined for the complexes $Ln(PMHFP)_3$.2TPPO (Ln = La - Lu, Y; PMHFP = 1-phenyl-3-methyl-4-heptafluorobutyryl-pyrazolone-5).⁶

In this work the preparation and study of some properties of the compounds between hydrated lanthanide trifluoromethanesulfonates and TPPO are presented.

EXPERIMENTAL

The addition compounds were prepared from 0.5 g of $\text{Ln}(\text{CF}_3\text{SO}_3)_3 \cdot 9\text{H}_2\text{O}$ and 1.2 g of TPPO (molar ratio 1:4). The salt was dissolved in 10 mL absolute ethanol and TPPO in 10 mL triethyl-orthoformate. The solutions were mixed and heated for 30 min at 30°C under constant stirring. After cooling to room temperature the vial was closed and put in the freezer for *ca* 15 days. The compounds were filtered, washed with ethyl ether and dried on CaCl₂. Lanthanides were determined by complexometric titration with EDTA using xylenol orange as indicator.⁷ C, H and N were determined on a Perkin-Elmer microanalyzer.

Electrolytic conductance was measured in 10^{-3} M acetonitrile and nitromethane solutions using Leeds and Northrup equipment and a cell of $K_c = 0.122231 \text{ cm}^{-1}$. Vibrational spectra of the salts, ligand and complexes were registered on a Perkin-Elmer 283 spectrometer. Absorption spectra of the Nd compounds at room temperature and 77 K were obtained in a Hitachi U3000 spectrophotometer. Thermogravimetric curves were obtained in a TGA-7, Delta Series Perkin-Elmer thermobalance under air dynamic atmosphere at 25 mL min⁻¹ flow and 10°C min⁻¹ heating rate.

RESULTS AND DISCUSSION

The same technical procedure was employed along the lanthanide series but as the ionic radius decreases crystal formation becomes more difficult and

	•							
			Analys	is %			Conduc	ctance
	Lanthe	mide	Cart	uoq	Hydro	nego	Acetonitrile A.40 ⁻¹ cm ² mol ⁻¹)	Nitromethane
Ln	Theor.	Exp.	Theor.	Exp.	Theor.	Exp.		
La*	9.42	9.30	46.41	46.90	3.35	3.52	154	81
** ص	8.24	8.18	52.75	52.78	3.56	3.32	157	94
Pr**	8.28	8.24	52.95	52.84	3.55	3.60	157	95
**bN	8.46	8.62	52.85	52.79	3.55	3.25	158	95
Sm**	8.79	8.66	52.66	52.34	3.54	3.48	157	95
Eu **	8.87	8.95	52.60	52.23	3.53	3.83	153	90
€d**	9.16	9.23	52.45	52.12	3.52	3.61	154	88
Tb**	9.24	9.34	52.40	52.15	3.52	3.49	152	89
Dv**	9.43	9.30	52.29	51.95	3.51	3.75	157	87
Ho **	9.56	9.53	52.21	52.01	3.50	3.70	154	84
Er **	9.68	9.67	52.14	52.85	3.50	3.44	151	8
Tm**	69.6	9.59	52.09	51.73	3.50	3.51	160	89
Yb**	10.00	10.24	52.06	51.70	3.50	3.43	159	68
Lu**	10.08	10.28	51.91	51.68	3.48	3.39	160	93
Y**	5.99	5.62	54.62	54.30	3.67	3.66	160	86
*La(CF ₃ SO **Ln(CF ₃ SC	() ₃ ·3TPPO-4H ₂ C) ₃) ₃ ·4TPPO.							

TABLE I Analytical and molar conductance data of the lanthanide trifluoromethanesulfonate complexes with triphenylphosphine-oxide

473

time consuming. From Ln, C, H and N analysis, the general formula was deduced: Ln(CF₃SO₃)₃ yTPPO xH₂O where Ln = La, y=3, x=4; Ln = Ce-Lu and Y, y=4 and x=0 (Table I). Electrolytic conductance measurements (Table I) are suggestive of 1:1 electrolyte behavior when compared to the Geary data.⁸ Table II contains representative IR bands and their assignments. The La compound presents an intense band at $3400-3200 \text{ cm}^{-1}$ due to water molecules. The free TPPO phosphoryl stretching frequency was shown at 1195 cm^{-1} . This was shifted toward lower frequencies ($ca 56 \text{ cm}^{-1}$) in the compounds, indicating coordination through the phosphoryl oxygen. The $\nu_{as}SO_3$ stretching vibrations show minor shifts as compared to the hydrate salt but, except for the La compound, unfoldings also occur, evidence for distortion of the C_{3v} symmetry

TABLE II IR data for compounds of formula $La(CF_3SO_3)$ ·3TPPO·4H₂O and $La(CF_3SO_3)$ ·4TPPO (cm⁻¹)

Compound/Ln	$\nu_{as}SO_3$	ν_{PO}	$\delta_{as}SO_3$
TPPO		1191	_
La	1232s	1143vs	636s
Ce	1241s 1219vs	1136vs	638vs 619m
Pr	1240s 1220s	1135s	637s
Nd	1241s 1220s	1135vs	638s
Sm	1240m 1220s	1134vs	637s
Eu	1239s 1221s	1133vs	637vs
Gd	1238s 1220s	1134vs	637vs
ТЬ	1238s 1221m	1134vs	637s
Dy	1238s 1222s	1134vs	637s
Но	1237s 1221s	1134vs	637vs
Er	1238s 1222vs	1137vs	637vs 619m
Tm	1238s 1223s	1136vs	637vs
Yb	1238s 1223s	1137s	637s 618m
Lu	1238s 1223s	1134vs	637s
Y	1238s 1222s	1136vs	637vs 618m

Note: vs = very strong; s = strong and m = medium.

of the $CF_3SO_3^-$ ion and suggestive of coordination where the oxygen atoms are not equivalent.⁹

Figure 1 shows the absorption spectra of Nd(CF₃SO₃)₃·4TPPO (silicone dispersion) at the regions corresponding to the hypersensitive transitions ${}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2}$, ${}^{2}G_{7/2}$ and ${}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}$. The number of bands indicates that the Nd³⁺ ion is not of cubic symmetry. The parameters, nephelauxetic¹⁰ ($\beta = 0.993$): covalence factor ($b^{1/2} = 0.59$) and Sinha's¹¹ ($\delta = 0.70$), show that the interactions are essentially electrostatic. Figure 1 also displays the spectra of the Nd compound in solution. The oscillator strengths¹² in nitromethane ($P \times 10^{6} = 10 \text{ cm}^{2}/\text{M}$) and acetonitrile ($P \times 10^{6} = 14 \text{ cm}^{2}/\text{M}$) show minor differences but large effects concerning the shape and the number of bands in relation to the solid state spectrum. This can be explained on the basis of interactions with solvents of different donating capacity.

Figure 2 shows the TG and DTG curves of representative compounds. They are thermally stable up to *ca* 350°C suffering decomposition with partial ligand liberation. In the case of lanthanum, four water molecules are lost in the first step from 97°C to 152°C. The anhydrous complex decomposes rapidly with TPPO, COF_2 and SO_2 evolution¹³ resulting in a final LaF₃ product (Table III). Thermal decompositions of the Ce-Lu, and

FIGURE 1 Absorption spectra of the neodymium compound: (a) solid state at room temperature (---); (b) solid state at 77 K (—); (c) acetonitrile solution (---) and (d) nitromethane solution (...).

FIGURE 2 TG Curves: (a) La(CF₃SO₃)₃·3TPPO·4H₂O (—) and (b) Lu(CF₃SO₃)·4TPPO (---).

Ln	Temperature range (°C)	Weight loss/res.		Attribution	Melting
		(%) Theor.	Exp.	resiaue	runge (C)
La	97-152 302-640 640-910	4.79 82.05 13.12	5.10 81.27 13.03	$-4H_2O$ -3TPPO LaF ₃	355
Ce	332-440 440-568 568-910	11.78 76.63 11.59	11.65 77.00 11.39	-3/4TPPO -13/4TPPO CeF ₃	260-266
Pr	345-360 460-580 580-942	9.02 79.30 11.59	9.02 79.10 11.75	-3/4TPPO -13/4TPPO PrF ₃	265-270
Nd	329-437 437-512 512-650 650-910	18.94 25.30 43.96 11.80	19.09 25.38 43.59 11.97	-5/4TPPO -6/4TPPO -5/4TPOO NdF3	275–280
Sm	329-436 436-510 510-602 602-910	21.55 28.33 37.79 12.12	21.59 28.64 36.86 12.44	4/3TPPO 5/4TPPO 1TPPO SmF ₃	285–287
Eu	337-441 441-600 600-910	16.18 71.54 12.16	15.56 71.69 12.32	-1TPPO -3TPPO EuF ₃	287-290

TABLE III Thermoanalytical data and melting ranges

Ln	Temperature range (°C)	Weight loss/res (%).		Attribution	Melting range
		Theor.	Exp.	residue	(°C)
Gd	337-441 441-571 571 010	17.96 69.54	17.18 69.64	-1TPPO -3TPPO	285-290
ТЪ	368-460 460-513 513-625	19.41 16.72 51.23	19.20 16.59 51.09	-5/4TPPO -1TPPO -7/4TPPO	287-290
Dy	625-910 339-443 443-513 513-650 650-910	12.56 16.15 32.31 38.78 12.74	12.89 15.85 32.44 38.16 13.00	TbF₃ 1TPPO 2TPPO TPPO DyF	290–294
Но	377-450 450-631 631-943	13.67 73.43 12.86	13.00 13.70 73.43 12.53	4/5TPPO 16/5TPPO HoF3	290-294
Er	325-441 441-620 620-900	12.89 73.04 12.98	12.46 73.23 12.68	-4/5TPPO -16/5TPPO ErF ₃	285-287
Tm	356-450 450-600 600-910	14.64 72.45 13.06	14.32 72.81 13.82	-1TPPO -3TPPO TmF ₃	290-293
Yb	340-440 440-561 561-910	19.87 66.73 13.27	19.89 66.57 13.40	-5/4TPPO 11/4TPPO YbF3	289–293
Lu	343-441 441-513 513-590 590-910	19.26 35.20 32.04 13.37	19.23 34.53 32.56 13.47	-5/4TPPO -9/4TPPO -2/4TPPO LuF3	290–294
Y	381–500 500–595 595–943	15.40 74.11 8.69	15.43 75.90 8.60	-ITPPO -3TPPO YF ₃	287–290

TABLE III (Continued)

Y compounds are characterized by partial ligand liberation, beginning at *ca* 350°C until a stable product is obtained at 910°C. Mass loss and gaseous product liberation are in agreement with the theory.¹³ Thermal decompostion steps were followed by IR. The IR of the 350°C residue present characteristic bands of both CF₃SO₃ and TPPO. The spectrum of the residue at 750°C does not show any band attributable to anion and ligand. Qualitative tests of the residue at 900°C were also performed with concentrated H₂SO₄ in lead crucibles to detect fluorine containing compounds.

Acknowledgements

F.L.A. is grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a Ph.D. fellowship. The authors are much indebted to CNPq and Plano de Apoio ao Desenvolvimento Científico e Tecnológico (PADCT) for financial support.

References

- [1] R.D. Howells and J.D. McCown, Chem. Rev., 77, 69 (1977).
- [2] G.A. Lawrance, Chem. Rev., 86, 17 (1986).
- [3] S.M. Mattson, E.J. Abranson and L.C. Thompson, J. Less-Common. Met., 112, 373 (1985).
- [4] G.G. Payne and J.R. Peterson, J. Less-Common. Met., 126, 371 (1986).
- [5] V.E. Karasev, A.G. Mirachnik and I.U. Vovna, Russ. J. Inorg. Chem., 33, 1276 (1988).
- [6] Y.C. Xing, W.J. Dong, X.I. Li and R.D. Yang, J. Coord. Chem., 22, 71 (1990).
- [7] S.J. Lyle and M.M. Rahman, *Talanta*, 10, 1177 (1973).
- [8] W.J. Geary, Coord. Chem. Rev., 7, 81 (1971).
- [9] A.L. Arduini, M. Garnett, R.C. Thompson and T.C.T. Wong, Can. J. Chem., 53, 3812 (1975).
- [10] P. Caro and J. Derouet, Bull. Soc. Chim. Fr., 1, 46 (1972).
- [11] S.P. Sinha, Spectrochim. Acta, 22, 57 (1966).
- [12] D.E. Henrie, R.L. Fellows and G.R. Choppin, Coord. Chem. Rev., 18, 199 (1964).
- [13] J.E. Roberts and J.S. Bykowski, Thermochim. Acta, 25, 233 (1978).